
Improved Web Service Self-Healing Connector

Khalid Kaabneh1, Suha Afaneh2, Heba Almalahmeh3, Issam Alhadid4
1Associate Proffesor, Multimedia Information Systems, Isra University, Amman, Jordan.
2Assistant Proffessor, Computer Science Department, Isra University, Amman, Jordan.

3Assistant Proffessor, Management Information System, Isra University, Amman, Jordan.
4Assistant Proffessor, Computer Information System Isra University, Amman, Jordan.

Abstract— Web service-based application is an architectural
style, where a collection of Web services communicates to each
other to execute processes. With the popularity increase of
developing Web service-based application and once Web
services may change, in terms of functional and non-
functional quality of service (QoS), we need mechanisms to
monitor, diagnose, and repair Web services into a Web
application. The goal of this paper is to build Web service that
are reliable and adaptable without the need to be modified
offline to meet the changing of the users’ requirements and
system resources. This can be achieved by using the Web
Service Self Healing Connector that provides a mechanism to
supervising the traffic between Web Service providers and
requesters to Monitor, dynamic run-time reconfiguration and
Quality of Service (QoS) management.

Keywords— Self Healing, Web Service, Service Oriented
Architecture, Quality of Service, Service Agreement Level,
Availability.

I. INTRODUCTION

Web services technology increasingly has been used to
develop the new software systems’ era, by moving from
module implementation to unit composition which is the
base of the Service Oriented Architecture (SOA). Web
service technology can reduce the time to market, as well
as the Quality of Service (QoS) according to the Service
Agreement Level (SAL) must be provided by the service
providers that can gain the clients’ reputation and increase
the market share. The new technologies era increased the
functionality and the complexity of the software and
systems in organizations, and as a result, a high system
management costs and increased systems, sub system or
component(s) failures. Accordingly, there is a growing
interest in Self-Healing software as a solution to solve the
problems of fault tolerance, reliability, security and
availability of the systems. [1, 2, 3, 4]. Naccache, Gannod
and Gary [3] stated that: “Self-healing systems must be able
to recover from the failure of underlying components and
services. The system must be able to detect and isolate the
failed component, fix or replace the component, and finally
reintroduce the repaired or replaced component without
any apparent application disruption”. Keromytis [4]
claimed that Self-healing software systems have emerged
as a research era in the recent years, motivated by the
capabilities of monitoring, diagnosis, and repair anomalies
as an exciting and potential solution to the existing
problems of inability of traditional technologies to
guarantee the software availability, robustness, and
reliability.

Traditional technologies suffer from the problem of
localized error handling which might be able to determine
the real problem source to take the right action. Because
they are included with the system’s code; this is not well
suited to recognize system anomalies such as performance,
difficulties of changing adapted polices, and unexpected
behavior. On the Other Hand, Self-Healing provides the
QoS management in order to satisfy evolving process
requirements and changing constraints. Self-Healing
systems change its own behavior when evaluation indicates
that the required QoS is not achieved, better performance or
functionality is required, or an anomalies behavior is
detected. The Web service Self-healing refers to the Web
services ability to automatically monitor, fault detection
and diagnosis, while repairing failures by executing an
action to maintain an appropriate QoS. [5, 4]. According to
Robertson & Williams [5] there are three main steps in the
WS self- healing process which also called the lifecycle of
self-healing, shown in Fig 1.

Fig 1: Self-Healing Process

Monitoring process collects and extracts information from
managed service tasks accessed during the execution by
track the tasks’ behavior and the objects accessed by the
tasks, Diagnosis process examine and analyze extracted
information passed by the monitor step, anomalies occurred
if service task does not execute as expected within specific
time or return an error value, and Repair process heal the
service by execution an action, specifies what action to be
taken in order to recover from any malfunction. If accepted
repair action is produced the system is updated accordingly.
Ben Halima, Drira & Jmaiel [7] stated that there are three
self-Healing levels; Service Level applied using extended
interfaces for WS management, Flow Level applied using
an extended manageable process execution engine used for
orchestrated services on Business Process Execution
Language (BPEL) level. And Communication level applied

Khalid Kaabneh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2649-2657

www.ijcsit.com 2649

using exchanged messages; by modifying the exchanged
messaged (SOAP) by adding the QoS parameters values
which will be applied in this paper using Web Service
Connector to Configure the Self-Healing.

II. RELATED WORK

Self-Healing in the communication level is applied using
middleware between the Web service and the service
requester, it is used to control and enhance the messages
traffic and QoS. In this section we will introduce the work
that has been achieved in the communication level to
provide the Self-Healing and guarantee the QoS. Halima,
Drira & Jmaiel [7] proposed a healing framework which is
based on service monitoring dynamic runtime
reconfiguration, and architectural level repair actions; Their
work is based on the communication level; implemented
using a connector-based healing layer capable of
intercepting, analyzing and enhancing the SOAP traffic and
messages which contains the QoS data which will supports
the QoS Monitoring and dynamic run-time reconfiguration
to achieve the run-time QoS. They claimed that “A (QoS-
centric) self-healing system inspects and changes its own
behavior when the evaluation indicates that the intended
QoS is not achieved, or when a better functionality or
performance is required.” Also, they suggested a service –
level and healing messages to monitor, digenesis and repair
the services. Shin & An [8] suggested an architecture that
includes a healing layer in connectors. The self-healing
connector contains two layers: a communication layer
which manages exchanged messages, and a healing layer
which reconfigures stub at connectors’ level. Taher et al.
[9], proposed a Web Service community which re-groups
Web services having similar functionalities that addresses
same users’ needed into communities. This community is
represented with an abstract Web service interface which is
a common interface for all similar Web services. They used
a mapping interface to map between the real Web Service
Interface and the Abstract Web service Interface.
Vilas & Vilas [10], proposed a QoS features inside a virtual
Web service called Wrapper to publish it as a standard Web
service. Clients invoke this virtual Web service which is
responsible for invoking real providers and mange the real
Web service QoS. Naccache, Gannod & Gary [11]
suggested a framework for developing an autonomic self-
healing portal system that relies on the notion of
differentiated services in order to survive unexpected traffic
loads and slowdowns in underlying Web services. Zhou,
Cai, & Godavari [12] proposed an architecture that define
and assign requests into multiple user classes to
differentiate the service level per request. Their approaches
classify the user class of the request and assign it to the
appropriate queue. If the server approaches overload, the
lower class requests are dropped or delayed in order to
allow the higher user class requests to go through. Almeida
et al. [13] introduced a dynamic reconfiguration approach
for distributed systems based on object- middleware to
manipulate distributed entities replacements, migration,
addition and removal Operations which provides
distribution transparency and flexibility for application
designers. Dabrowski and Mills [14] discussed the

available Self-Healing strategies used by service-discovery
systems, in addition to the effect of using a combination of
strategies. This is to monitor the consistency of distributed
components under varying network conditions, such as
increasing network failures. The goal of this research is to
provide a mechanism to supervising the traffic between
Web service providers and requesters to Monitor, dynamic
run-time reconfiguration and QoS management.

III. PROPOSED ARCHITECTURE
The main goal of this paper is to provide a unified
Architecture that expands the classical service oriented
architecture (SOA) using Web Service Self-Healing
Connector as Web service interface to guarantee the
Quality of Service (QoS) and to provide the expected Web
services’ behavior and functionality and maintain both
services integrity and availability. Fig 2 shows the
proposed Web Service Self-Healing Connector
Architecture.

Fig 2: Web Service Self-Healing Architecture

A. Web Service Self Healing Connector

Web Service Self Healing Connector exposes Web
services’ interfaces to the clients, and allows the interaction
between clients and Web services. Also, Web Service Self-
Healing Connector Keeps an eye on the held requests that
didn’t responded, also, make sure that the response time out
is not been exceeded, in addition, guarantee that the Web
service will not be flooded with requests to provide the
expected QoS; it will react if the Web service is hit with a
higher than expected requests (flash crowed) that would
slow or stop the Web service from responding to requests.
As well, it will work to allocate Web service optimally and
do not refuse any valid request. And finally it will map the
consumer requester parameters with substituted Web

Khalid Kaabneh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2649-2657

www.ijcsit.com 2650

service WSDL input parameters. And as a result, it will
guarantee the QoS as agreed in the Service Level
Agreement (SLA) for the requested users. If the Web
service executed successfully, it will send the response to
the Web Service Self-Healing Connector which will send
the request results to the service consumer who invoked the
Web service and a notification to the Extended Execution
Engine to invoked the related Web services participating in
the composed service that fulfill a specific business
process. The Web Service Self-Healing Connector as
observer between the invoked Web service and the Service
Consumer, and the invoked Web service and the Execution
manager to guarantee the QoS according to the Service
Level Agreement (SLA). Web Service Self-Healing
Connector is responsible for the Web service QoS based on
the SLA because we don’t want to dump the network with
redundant information. Fault detection notification will be
enough.
Applying Web Service Self Healing Connector Algorithm
will guarantee that Web services will not be flooded with
requests to provide the expected QoS according to the
Service Level Agreement (SLA).

 Req/Resp Connector Manager: Get Clients’ Requests

and insert QoS Parameters (service invocation time)
 WS Reconfiguration Manager: mapping of the input

parameters (if necessary), and send request to the real
Web service.

 Real Web service: execute and send response to Web
Service Self-Healing Connector.

 WS Reconfiguration Manager: receive the Web
service response and forward it to the Diagnosis
Manager.

 Diagnosis Manager: analyze the Web service
response:

IF (Error, Fault, anomaly):
- Send analyzed information to WS Healing &

Reconfiguration Planner.
Else
- Remove the QoS parameters from the Web

service response and send it to the Req/Resp
Connector Manager.

- Analyze statistically the QoS parameters and
the Web service QoS History and Send results
to WS Healing & Reconfiguration Planner.

End IF
 WS Healing & Reconfiguration Planner: decide the

action about the current Web service according to WS
Diagnosis Manager results (anomalies detected, QoS
parameters, and SLA), and send decision to WS
Reconfiguration Manager.
Actions:

IF (Error, Fault, anomaly):
- Send request to the Real Web service (B)
- Send request to composed Web service.
- Re-Invoke Real Web service (A)
Else
IF (SLA not satisfied, history of Web Service
QoS):
- Use Web service (B) for the future requests.

- Keep using Web service.
End IF

 Req/Resp Connector Manager: map the response
results (if necessary), and send response to the Web
service requester.

Repair Manager Healing Actions might be one of the
following actions:
 Re-Invoke Web Service
 Invoke a substituted Web Service
 Invoke a composed Web service functionality

equivalent
 The repair actions are generated automatically from

the Web Service Definition language (WSDL)
specification by substituting Web service by another
functionality equivalent Web service.

Fig 3 shows the Web Service Self-Healing Connector
architecture.

Fig 3: Service Self-Healing Connector architecture

Web Service Self-Healing Connector objects provide
healing capabilities using monitor, diagnosis, and healing
actions. The objects of the Web Service Self-Healing
Connector are:
 Req/Resp Connector Manager: Used to Intercept the

consumer request to check the sent request parameters
number and types (Input faults or Type faults), also to
insert the value of service invocation time QoS
parameter, and forward it to WS Reconfiguration
Manager. Also, send the response of the real Web
service to the requesters and map results if necessary.
In addition, prevent any unauthorized request to
invoke the Web Service.

 WS Reconfiguration Manager: Responsible for
sending requests and receiving responses of the real
Web service which is selected according to WS
Healing & Reconfiguration Planner, mapping process
between the different Web service providers’ WSDL
input parameters. As well, react according to the WS
Healing & Reconfiguration Planner notification to
execute the healing action

 WS Diagnosis Manager: Analyze the real Web
service response for any errors, in addition, analyze
the QoS parameters’ values and Web service QoS

Khalid Kaabneh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2649-2657

www.ijcsit.com 2651

history statistically and send the analyzed information
to the WS Healing & Reconfiguration Planner. Also,
store the QoS parameters values in the WS QoS DB.
In case of no anomalies detected in the Web service
response, it will send the real Web service response to
the Req/Resp Connector Manager to forward it to the
Web service requester.

 WS Healing & Reconfiguration Planner: Analyze the
WS Diagnosis Manager results and decide the healing
action in case Web service execution failure using the
action knowledge. Also, compare the analyzed QoS
results and the Service Level Agreement (SLA) to
decide if the current Web service provides the
expected service (might ask the WS Reconfiguration
Manager to leave Web service “1” and bind the
request to Web service “2”), and finally send the
decision to WS Reconfiguration Manager.

 WS QoS Database: Used to store the Web service
QoS parameters’ values.

 Action Knowledge: Used to match the recommended
healing action in order to heal the request.

Web Service Self-Healing Connector QoS parameters:

1. Invocation time of service by requester
2. Communication time to reach Web Service

provider side taken by SOAP Message (depends
on network latency)

3. Time response will take to reach the Web Service
Self-Healing Connector side (network +
execution).

4. Invocation time of the service by Web Service
Self-Healing Connector.

5. Execution time associated with request by Web
Service.

The following is a generic QoS parameter which will be
included inside the SOPA message between the Web
Service Self-Healing Connector and the Web Service:
<SHQoS>
 <QoSparam>

<ClintRequestTimeIntercept>VALUE</ClintRequ
estTimeIntercept >
<WSRequestTimeIntercept>VALUE</WSReques
tTimeIntercept >
<ConnectorRequestTime>VALUE</ConnectorRe
questTime>
<WSResponseTimeIntercept>VALUE</WSRespo
nseTimeIntercept>
<WSFinishExecutionTime>VALUE</WSFinishE
xecutionTime>

 </QoSparam>
</SHQoS>

Diagnosis Manager will use Web service response QoS
parameters and Web service QoS history to analyze the
Web service behavior, the analyzed data will extract the
following:
 Availability: availability of a service: availability rate,

mean time to repair, mean time between failures.
 Throughput: The amount of requests that can be

processed in a specified period of time

 Communication Time: The round trip time of a
request and its response.

 Accuracy: The success rate produced by the service.
 Execution Time: The time for processing a request.
 Response Time: The time between sending a request

and receiving its response.
 Accessibility: Ability of a service to process a given

request.
 Reliability: the ability of a service to keep operating

over time, characterized by availability/accessibility
and successful execution rate

 Performance: productivity of a service: throughput,
latency, response time.

 Security: check the client if authorized to invoke the
Web service or access the Web service resources. As
well as, an encryption technique might be used to
increase the security features.

Fig 4 shows the Web Service Self-Healing Connector’s
components at work, the WS Reconfiguration Manager
controls the incoming and outgoing invocations, in addition
to executing the suitable healing actions recommended by
WS Healing & Reconfiguration Planner. This is decided
according to QoS parameters, SLA, and Web service’s
history analyzed by WS Diagnosis Manager.

Fig 4: Web Service Connector’s Components at Work

The request of the invoker will be intercepted by the
Req/Resp Manager to add the first QoS parameter (received
time). The request with the added QoS parameter will be
forwarded to the WS Reconfiguration Manager to invoke
the real Web service. When the response is received, it will

Khalid Kaabneh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2649-2657

www.ijcsit.com 2652

be sent to the Diagnosis Manager to analyze the result and
compare the QoS parameters with the SLA contract.
According to the analyzed data, and if an anomaly is
detected, the WS Healing & Reconfiguration Planner will
use the Action Knowledge to generate a healing strategy,
and apply that action to repair the detected anomaly
through the WS Reconfiguration Manager. If the healing
action is successful, the Diagnosis Manager will send the
result to the Req/Resp Manager to respond to the
invocation’s requester. If the healing action is not
successful, then the next healing action will be applied and
so on until no more actions are available. In this case, an
error response will be sent to the invocation’s requester that
the request cannot be fulfilled.

B) Web Service Mapping
The substituted Web service must be functionality similar,
fulfill the same users’ needed at an abstract level, so it can
take the place of the other Web service. Web service
structure and behavior might be a problem in
incompatibilities between Web services even if address the
same functionality. Structure functionality focuses on
parameters name, ordered, and type. On the other hand,
behavior focuses on the execution order of the
operations [9].

Fig 5 illustrates in general the mapping process.

Fig 6 shows a detail process for the Web Service Self-
Healing Connector and the Repair Manager healing action
taken to heal the anomalies detected during the process
execution.

Fig 6: Web Service Self-Healing Connector Process

For example, FlightBooking is the web Method in airline
reservations systems form company X, while company Y
Web Method’s name is FlightReservation for its airline
reservations system. Also, the name and type of WSDL
input parameters are different for each Web Method. To
avoid such problem, Web Service Self-Healing Connector
will provide a dynamic binding mechanism between the
abstract and concrete Web service parameters and
operations, to achieve the required functionality. Mapping
process is shown in Table 1.

TABLE I
 MAPPING PROCESS

Abstract Web
Service Interface

provided by Virtual
Web Service
Connector

Concrete Web
Service Interface
provided by real

Web Service

Mapping

Operation:
FlightBooking
Input Parameters:
- FName: String
- LName: String
- Gender: String
- From: String
- To: String
- DateTime: String

Output:
- JDCost: Float

Operation:
FlightReservation
Input Parameters:
- Name: String
- Gender: integer
- From: integer
- Destination: integer
- DateTime:
DateTime

Output:
- DollarCost: Float

Input Mapping:
- Name: MapName

(FName, LName)
- Gender:

MapGender(Gender)
- From: MapFrom(From)
- Destination:

MapDestination(To)
- DateTime:

MapDateTime
(DateTime)

Output Mapping:
- JDCost=
MapJDCost(DollarCost)

XQuery language can be used to implement the adaption on
the XML SOAP message to map the input, output, and
operations names and types. It is used to retrieve and
interpret information from XML Data Sources [15].

Khalid Kaabneh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2649-2657

www.ijcsit.com 2653

The following is the Pseudo code for implementing the
mapping process:
 MapGender(Gender):
 If Gender = “Female”
 Return 1
 Else
 Return 2
 MapName(FirstName, LastName):
 Return FirstName & “ “ & LastName
The implantation of Web service mapping adaption using
Web Service Self-Healing Connector:
Receive:

 FlightBooking (FName, LName, Gender, From, To,
DateTime)

Mapping:

Name MapName (FName, LName)
Gender MapGender (Gender)
From MapFrom (From)
Destination MapDestination (To)
DateTime Map DateTime (DateTime)

Invoke FlightReservation [Input] (Name, Gender, From,
Destination, DateTime) [Output] (DollarCost)
Mapping:

JDCost MapJDCost (DollarCost)

Reply FlightBooking (JDCost)

Request sent to Real Web Service by Web Service Self-

Healing Connector

<Soapenv: Envelope>
 <Soapenv: Header>

 </Soapenv: Header>
 <Soapenv: Body>
 <SHQoS>
 <QoSparam>
 <ClintRequestTimeIntercept>20091117230510</

ClintRequestTimeIntercept >
 </QoSparam>
 </ SHQoS >
 {Input Parameters for the Web Service: based on

the mapped parameters above}
 <Soapenv: Body>
</Soapenv: Envelope>

Where the value 20091117230510 stands for: Year, Month,
Day, Hour, Minute, and seconds of the client request
interception time. The response that will be sent by the
Web Service to the Web Service Self-Healing Connector
holding the QoS Service parameters will be as follows:
<Soapenv: Envelope>
 <Soapenv: Header>
 </Soapenv: Header>
 <Soapenv: Body>
 <SHQoS>

 <QoSparam>
 <ClintRequestTimeIntercept>20091117230510</
ClintRequestTimeIntercept>
<ConnectorRequestTime>20091117230511</Con
nectorRequestTime>
<WSRequestTimeIntercept>20091117230513</W
SRequestTimeIntercept>
<WSFinishExecutionTime>20091117230518</W
SFinishExecutionTime>
<WSResponseTimeIntercept>20091117230520</
WSResponseTimeIntercept>

 </QoSparam>

</ SHQoS >
 {Output Parameters of the Web Service}

<Soapenv: Body>
</Soapenv: Envelope>

III. IMPLEMENTATION
The process of E-Ticket booking will be implemented with
and without the three levels self-healing, the results will
show the effect of self-healing and if it’s preferable to
apply self-healing with all Web services’ implementation.
The process will start when a client sends the request to
book a ticket, she/he will insert the required fields, such as;
from, destination, departure date, return date, in addition to
his/her credit card number which will be used for billing
and invoicing operations. The process of booking, credit
check, E-payment, and billing will be assigned to different
Web services which will work as interfaces for the systems
that will execute the processes. The Web Service Self-
Healing Connector for each Web service will be used to
guarantee the service availability. The E-Ticketing
business process consists of the following set of
participating Web service: Booking, Credit Check, E-
Payment, and Billing, using the mentioned business process
the clients can use, and the available composition service

for ticket booking. Also, the Airline companies can trace all
booking, credit check, payment, and billing data. Fig 7
shows booking E-ticket process.

Fig 7: E-ticket Booking Process

Late we ran the E-Ticket business process with and without
Web Service Self-Healing Connector. The business process
had been invoked 100 times with random faults, and the
program’s execution was forced to invoke the participant

Khalid Kaabneh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2649-2657

www.ijcsit.com 2654

Web services. There were random errors with 10% of the
invocations. Fig 8 shows the total number of invocations,
number of invocations without errors, and number of
invocations with errors.

Fig 8: Execution Engine Invocations without Web Service

Self-Healing Connector

In addition to the injected errors in the first run, which was
without the Self-Healing capabilities, the results show there
are unexpected errors in the program execution caused by
the service unavailability, and unmapped input and results.
Fig 9 shows the number of failed and successful
invocations.

Fig 9: Invocations’ Results without Web Service Self-Healing Connector

Also Fig 10 shows the execution time of the whole business
process without the Self-Healing. The invocation with
errors are shown with long time delay in the execution
time, in addition, it returned an error responses.

Fig 10: Invocations’ Execution Time without Web Service Self-Healing
Connector

On the other hand, the program execution with Self-
Healing capabilities showed the program’s behavior
remained the same even in the presence of the randomly
injected errors. Fig 11 shows the total number of
invocations, number of invocations without errors, and the
number of invocations with errors.

Fig 11: Execution Engine Invocations with Web Service Self-Healing

Connector.

Fig 12 shows the number of failed and successful
invocations in the presence of the Self-Healing. The Figure
shows that there were no failures during the business
process execution.

Fig 12: Invocations’ Results with Web Service Self-Healing Connector.

Also, Fig 13 shows the execution time of the whole
business process execution with the Self-Healing
capabilities. The Figure shows that even in the presence of
injected errors in the invocations. The maximum
executions’ time is less than the same invocations with
errors without Self-Healing. In addition, all the results
returned a valid response without errors.

Fig 13: Invocations’ Execution Time with Web Service Self-Healing

Connector

0

20

40

60

80

100

120

Total Number
of Invocations

(100)

Incovations
without errors

(94)

Invocations
with errors (6)

0

20

40

60

80

100

Incovations with
Success Result (88)

Incovations with Error
Result (12)

0

20

40

60

80

100

120

Total Number
of Invocations

(100)

Incovations
without errors

(92)

Invocations
with errors (8)

0

20

40

60

80

100

120

Incovations with Success
Result (100)

Incovations with Error
Result (0)

Khalid Kaabneh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2649-2657

www.ijcsit.com 2655

According to the run results shown in Fig 10 and Fig 13,
the minimum execution time in the first run without Self-
healing is 2890.625 milliseconds and the maximum is
122000 milliseconds. The average execution time is
7660.15625 milliseconds with 12 failures. On the other
hand, the second run with Self-healing minimum execution
time is 4343.75 milliseconds, the maximum is 39156.25
milliseconds. The average execution time is 7607.80875
milliseconds with no failures. Implementations’ Execution
time with and without Self-Healing is shown in Fig 14.

Fig 14: Implementations’ Execution Time With and Without Web Service

Self-Healing Connector

The proposed architecture with Self-Healing
implementation increased the availability of the participant
Web services, as well as the reliability. All invocations
were successfully executed even with presence of the
errors, in addition to the average execution time is better
than the one without self-healing. Also, the maximum
execution time, which indicates that an error occurred
during the execution, has been healed successfully. Table 2
shows a comparison between the runs with and without
self-Healing capabilities.
Table 2 shows that with Self-Healing the invocations were
all executed successfully, while without Self-Healing,
returned 12 failures. On the other hand, the minimum
execution time without using Self-Healing is better; around
1453.125 milliseconds less than the minimum execution
time using Self-Healing; because we used the Web Service
Self-Healing Connector in the Self-Healing architecture.
The maximum execution time using the Self-Healing is
three times better three than the maximum execution time
using the architecture without Self-Healing, which at the
same time returns a valid value, without Self-Healing
return errors. Finally, the average execution time using
Self-Healing for all invocations is better than the average
execution time without Self-Healing.

TABLE II
 COMPARISON BETWEEN RUNS WITH AND WITHOUT SELF-HEALING

CAPABILITIES

Category
Without Self-

Healing
With Self-Healing

Number of all
invocations

100 100

Number of
invocations without
errors

94 92

Number of
invocations with
errors

6 8

Number of success
invocations

88 100

Number of failure
invocations

12 0

minimum execution
time

2890.625
millisecond

4343.75
millisecond

Maximum execution
time

122000
millisecond

39156.25
millisecond

average execution
time

7660.15625
millisecond

7607.80875
millisecond

IV. CONCLUSION

In this paper we argued that SOA architectures require
more monitoring and controlling during the run-time. In
fact, since the components of the Service Oriented
applications and their interconnections may change after
deployment, the traditional error handling is not enough to
guarantee that the application will satisfy the required
quality requirements. We have proposed a SOA with new
Self-Healing Architecture with healing capabilities that
provides Services' interface which monitors the invocations
and make sure that the required QoS has been achieved. In
addition to increases the Web service's availability,
reliability, accuracy, and guarantee the expected behavior.

REFERENCES
[1] Andrzejak, A., Geihs, K., Shehory, O., and Wilkes, J., “Self-Healing

and Self-Adaptive Systems”, In Proceedings 09201 Combinatorial
Scientific Computing, 2009.

 [2] Horn P., “autonomic computing : IBM’s Perspective on the State of
Information Technology”, 2001, IBM Research. Retrieved August
25, 2009 from
http://researchweb.watson.ibm.com/autonomic/manifesto/autonomic
_computing.pdf

 [3] Shehory, O., “A Self-healing Approach to Designing and Deploying
Complex, Distributed and Concurrent Software Systems”, in
Programming Multi-Agent Systems, Vol. 4411/2007, R.H. Bordini et
al. (Eds.). Berlin: Springer, 2007, pp. 3–13.

 [4] Keromytis, D. A., “Characterizing Software Self-healing Systems”,
in Computer Network Security,Vol 1, V. Gorodetsky, I. Kotenko,
and V.A. Skormin (Eds.). Berlin: Springer, 2007, pp. 22–33.

[5] Al-Hadid, I. (2012), Improved Airport Enterprise Service Bus with
Self-Healing Architecture. In A. El-Sheikh, M. Jafari, E. Abu Taeeh,
Technology Engineering and Management in
Aviation: Advancements and Discoveries, Pennsylvania: IGI.

[6] Robertson, P., and Williams. B., “Automatic recovery from software
failure”, Communications of the ACM, Vol. 49, No. 3, pp.41– 47,
2006.

[7] Ben Halima, R., Drira, K., and Jmaiel, M., “A QoS-driven
reconfiguration management system extending Web services with
self-healing properties”, in 16th IEEE International Workshops on
Enabling Technologies: Infrastructure for Collaborative Enterprises
(WETICE 07,) 2007, pp. 339-344.

[8] Shin, M., and An, J., “Self-reconfiguration in self-healing systems”,
In Proceedings of the Third IEEE International Workshop on

Khalid Kaabneh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2649-2657

www.ijcsit.com 2656

Engineering of Autonomic & Autonomous Systems (EASE’06), 2006,
pp. 89–98.

[9] Taher, Y., Benslimane, D., Fauvet, M.C., and Maamar, Z., “Towards
an Approach for Web services Substitution”, In Proceedings 10th
IEEE International Database Engineering and Applications
Symposium (IEEE IDEAS 2006), 2006, pp. 166-173.

[10] Vilas, J., Arias, j., and Vilas, A., “An architecture for building Web
services with quality-of-service features”, In Proceedings of the 5th
International Conference on Web-Age Information Management
(WAIM 2004), 2004.

[11] Naccache, H., Gannod, G., and Gary, K., “A Self-healing Web
Server Using Differentiated Services”, In Proceedings of the 4th
International Conference on Service Oriented Computing (ICSOC
2006), 2006.

[12] Zhou, X., Cai, Y., and Godavari, G, “An adaptive process allocation
strategy for proportional responsiveness differentiation on web
servers”, In IEEE International Conference on Web Services (ICWS
2004), 2004, pages 142–149.

[13] Almeida, J.P.A., Wegdam, M., Pires, L.F., and Sinceren, M.V., “An
approach to dynamic reconfiguration of distributed systems based on
object-middleware”, In Proceedings of 19 Brazilian Symposium on
Computer Networks (SBRC'2001), 2001, pp. 1589–1621.

[14] Dabrowski, C., and Mills, K., “Understanding Self-healing in
Service-Discovery Systems”, In Proceedings of the first workshop
on Self-healing systems, 2002, pp. 15 - 20.

[15] XQuery, “An XML Query Language”, Retrieved October 25, 2009
from http://www.w3.org/TR/xquery/

Khalid Kaabneh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2649-2657

www.ijcsit.com 2657

